高功率密度数据中心动力解决方案

艾默生网络能源公司 温**顺**理

目录

- 1 IDC的最新发展趋势
- 2 IDC动力绿色动态解决方案发展趋势
- 3 艾默生动力解决方案案例分享

IDC动力支撑系统的发展趋势

由分散再次走向集中

Time Frame	1965-1980	1980-1995	1995-2005	2005-?		
技术推动因素 Driving	technologies networking, Moore's law backbone, 互联网		· · · · · · · · · · · · · · · · · · ·	mile, high density		
Technology	计算机技术	PC,服务器,网络,摩尔 定律	,宽带,高速链路	最后一公里宽带, 高密度		
机房环境 Computing	Mainframes 大型机	个人电脑,局域网,广域 网	网络互联带来IDC, 服务器农场等集中	中小数据中心向大 型数据中心合并		
Environment			处理	虚拟化计算和云计 算		
		SERVER				

对供电,散热 和开关等产品 应用的影响

催生了第一代大型 UPS和空调

推动中小UPS, 空调技术 的发展

推动大型UPS和空 调的发展,01年网 络泡沫到达巅峰

对更大容量系统和 更高系统可靠性提 出新要求

集中主机

分散计算

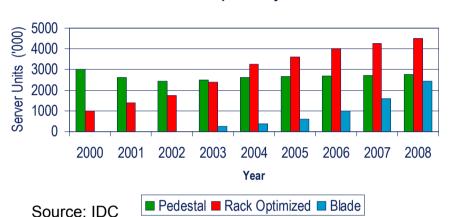
Central Facility → **Decentralization** → **Re-centralization/ Consolidation** 再次集中

IDC动力支撑系统的发展趋势— 由分散再次走向集中

驱动因素:

Primary Drivers of Recentralization

- Business Performance业务表现
 - 降成本Cost reduction
 - 客户关系管理CRM capability
- Security安全
 - Better change control
 对变化的应对
 - Better access control 对接入的管理
- Technology 技术
 - Broadband & VPN 宽带/虚拟技术


宽带/虚拟技术
Storage solutions 存储技术

Company	Total Data Centers before Consolidation 整合前数据中心 数量	Total Data Centers after Consolidation 整合后数据中 心数量			
HP	85	6			
JPMorgan	90	30			
Intel	100	12			
Cardinal Health	42	7 (target 2)			
Microsoft IT	24	4			

Shift from smaller towards larger computing environments

IDC动力支撑系统的发展趋势— 机架内功率密度的增长

WorldWide Server Shipment by Form Factor

Blade servers will b 25% of mix by 2008; increasing rack power **Density**

刀片式服务器到2008年将 占有25%的份额,这将增加每 个机架的功率密度

IBM Blade Center 31.6kW/ Rack

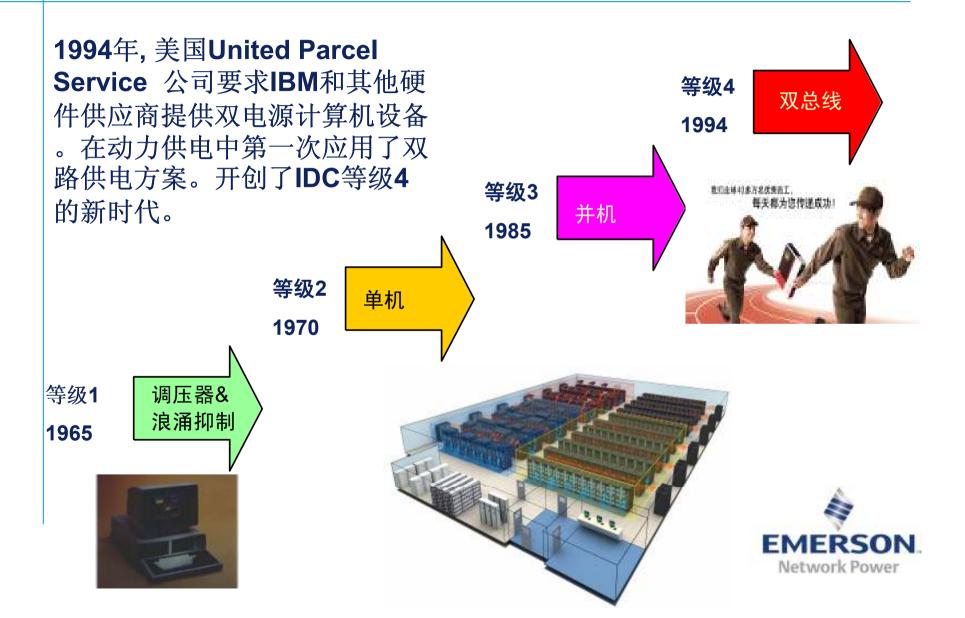
Mail Server File Server Web Server

Up to 30 servers being consolidated into one, increasing rack power

多达30台服务器的功能 集成到一台服务器中, 步增加机架的功率密

density

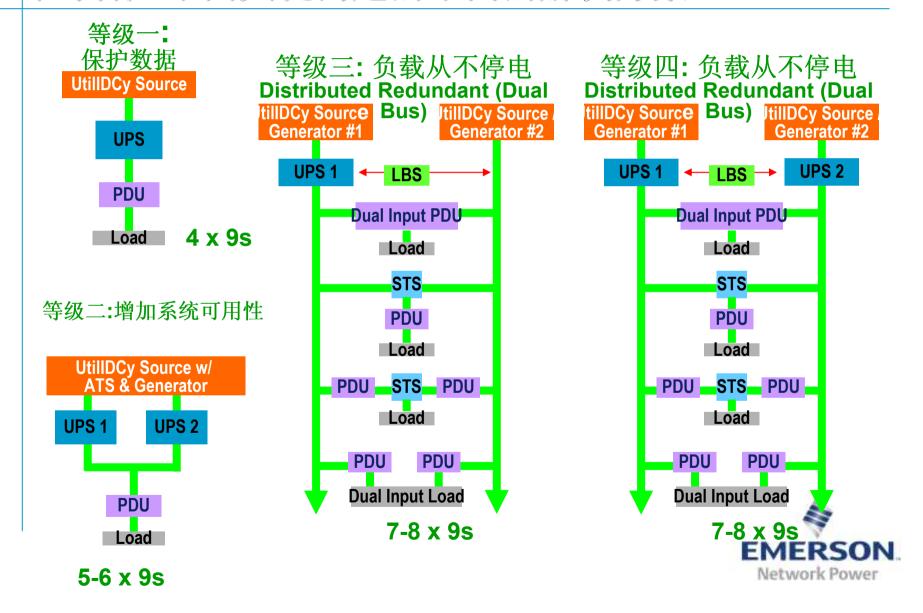
App Server



目录

- 1 IDC的最新发展趋势
- 2 IDC动力绿色动态解决方案发展趋势

IDC数据中心动力设计的历史演变


用解决方案来满足不同负载保护等级的要求

	<i>几个9 可用性</i>	停电时间	用户价值	典型解决方案
等级1	(3) 99.9%	8.77 hours	Protect hardware investment	Single UPS Single Bus
<i>等级</i> 2	(4) 99.99%	53 min	Downtime costs can impact business; need to preserve data	Redundant UPS Single Bus
等级3	(5-6) 99.999%	5.3 min – 31.6 sec	System crIDCical to business success; increase uptime	Dual Bus 1 Active & 1 passive
等级4	(7-8) 99.99999%	3 sec to .3 sec	The system is the business; uptime is their competIDCive advantage	Single or Redundant UPS Dual Bus 2 active

EMERSON. Network Power

注: 源于艾默生企业标准

针对客户不同关键问题的不同的解决方案

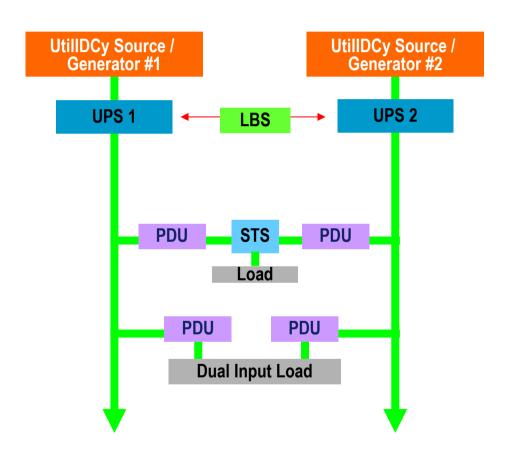


服务器电源系统

Power Grid 1

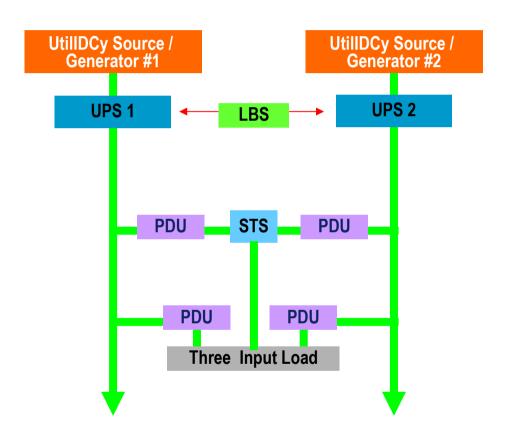
3+1 Redundancy

- 1200W Power Supplies
- C14 cord input
- Total Draw = 24Amp @ 200V
- Draw per Power Supply 8Amp@200-208V or 7@230V
- Requires minimum of 3 functioning Power Supplies

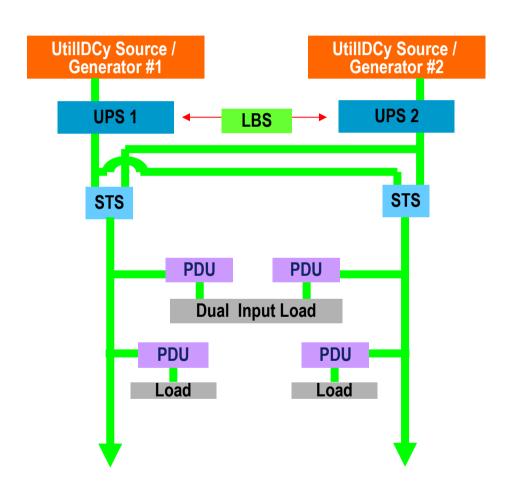


2+2 Redundancy

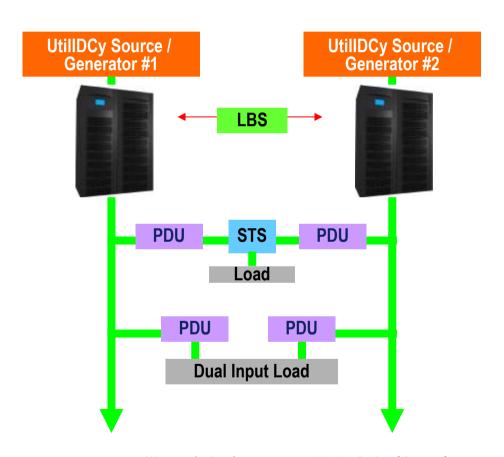
- 2100W Power Supplies
- C20 Cord Input
- Total Draw = 24Amp @ 200V
- Draw per Power Supply 12Amp@200-208V or 11.5@230V
- Requires minimum of 2 functioning Power Supplies



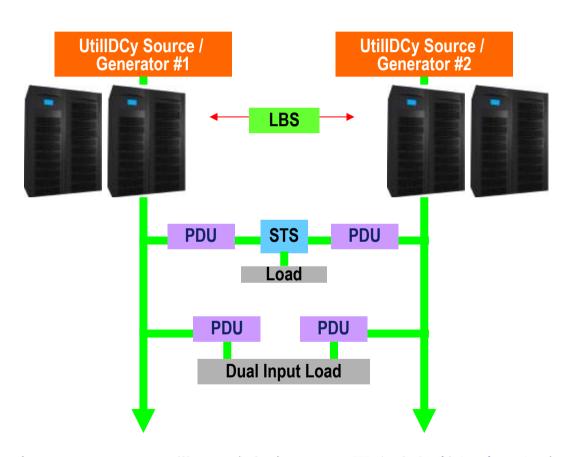
双总线供电电气原理图(单电源和双电源设备)



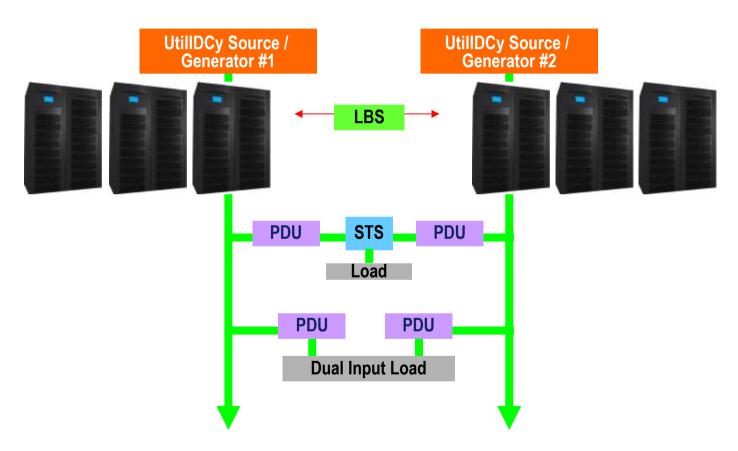
双总线供电电气原理图(三电源设备)



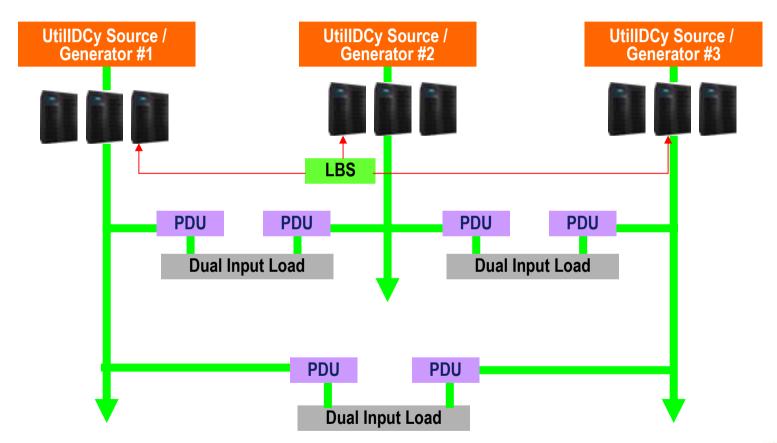
双总线供电电气原理图(高端设备要求)


双总线供电动态解决方案

- ●单机选用400KVA,可带90个机架,360平方米的数据中心设备
- ●单机选用800KVA,可带180个机架,720平方米的数据中心设备

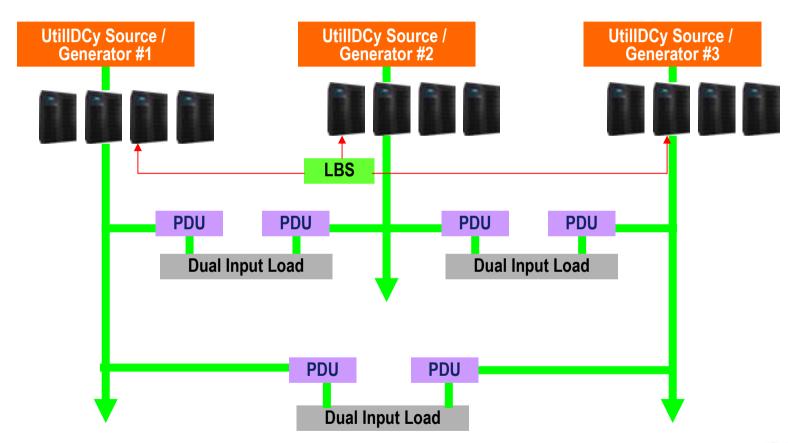

双总线供电动态解决方案

- ●单机选用400KVA,可带180个机架,720平方米的数据中心设备
- ●单机选用800KVA,可带360个机架,1440平方米的数据中心设备


双总线供电动态解决方案

- ●单机选用400KVA,可带270个机架,1080平方米的数据中心设备
- ●单机选用800KVA,可带540个机架,2160平方米的数据中心设备

三总线供电电气原理图

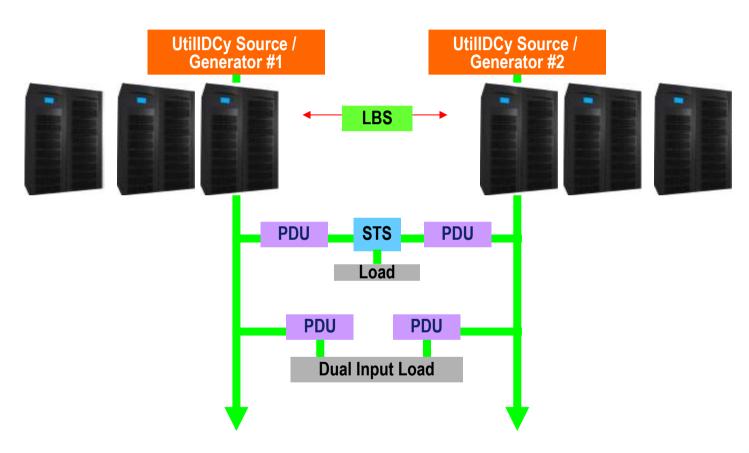


●单机选用400KVA,可带540个机架,2160平方米的数据中心设备

●单机选用800KVA,可带1080个机架,4320平方米的数据中心设备 EMERSON

Network Power

三总线供电电气原理图



●单机选用400KVA,可带720个机架,2880平方米的数据中心设备

●单机选用800KVA,可带1440个机架,5760平方米的数据中心设备 **EMERSON**

Network Power

双总线供电绿色解决方案—休眠

月录

- 1 IDC的最新发展趋势
- 2 IDC动力绿色动态解决方案发展趋势
- 3 艾默生动力绿色动态案例分享

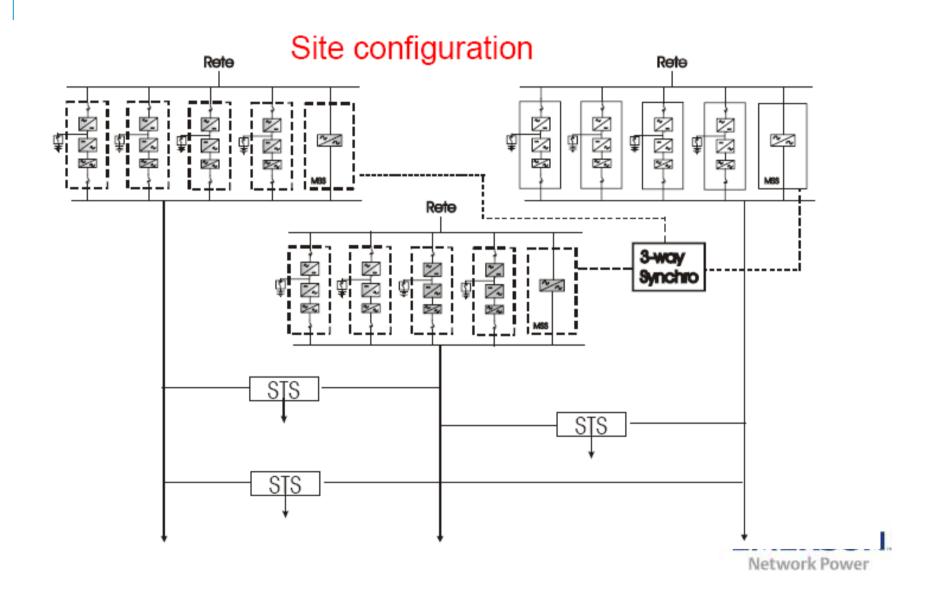
艾默生大型UPS海外部分应用案例

全球各行业超过100000台大型UPS以上应用

<u> </u>	<u> </u>	<u> </u>	_ +	<u> </u>		- / /			
		Т							
		Y				MOD		total	total
		Р	SYS	MOD	NO.	PER	TTL	sys	mod
CUSTOMER	LOCATION	E	kVA	kVA	SYS	SYS	MOD	kva	kva
Dept.of Defence-pentagon	Washington, Arlington	M	1000	500	2	2	4	2000	2000
Dept.of Defence-pentagon	Washington, Arlington	S	625	625	2	1	2	1250	1250
Dept.of Defence-pentagon	Washington, Arlington	S	500	500	2	2	2	1000	1000
NASA	Huntsville, AL	S	625	625	1	1	1	625	625
NASA - 2 Independence Sq.	Washington, DC	M	800	400	1	3	3	800	1200
NASA - Marshall Space Flt	Huntsville, AL	S	500	500	1	1	1	500	500
NASA-White Sands	White Sands Missile, NM	M	500	500	1	1	1	500	500
NASA-WVU(expn'd)	Fairmont, WV	M	1000	1000	1	2	1	1000	1000
NASA-WVU(expns'n)	Fairmont, WV	M	1000	1000			1	0	1000
Admin Ofc of the US Crt	Washington	S	225	225	1	1	1	225	225
FBI - J Edgar Hoover	Washington	M	1000	1000	1	4	4	1000	4000
FBI - J Edgar Hoover	Washington	S	500	500	1	1	1	500	501
FBI - J Edgar Hoover	Washington	S	500	500	1	1	1	500	500

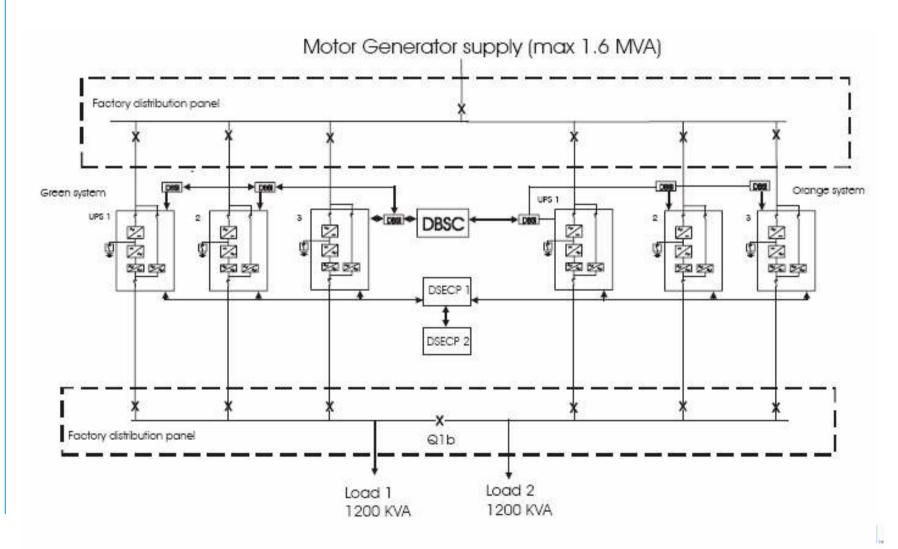
Emerson Liebert at Telehouse

- 在伦敦提供以下解决方案
 - 18 #s 800 kVA (HIPULSE UPS)



Telehouse三母线供电系统拓扑图

London Stock Exchange双母线供电系统配置


System configuration

- N. 2 independent system each composed of 3x400 kVA in 1+n configuration
- The two independent systems are kept in Synchro using Hisynch
- Using the new Dynamic System Expansion (DSE) when necessary it is possible MERGE the two independent systems.
- In MERGE condition all the 6 units operate as one system in terms of synchro and load sharing

London Stock Exchange双母线供电系统拓扑图

广东电信IDC

广州电信亚太信息引擎IDC 400KVA*24

深圳龙岗IDC 200KVA*6, 400KVA*6

深圳沙河IDC 400KVA*6

深圳福永IDC 400KVA*10

广州花地湾 400KVA*2

东莞道窖 400KVA*2

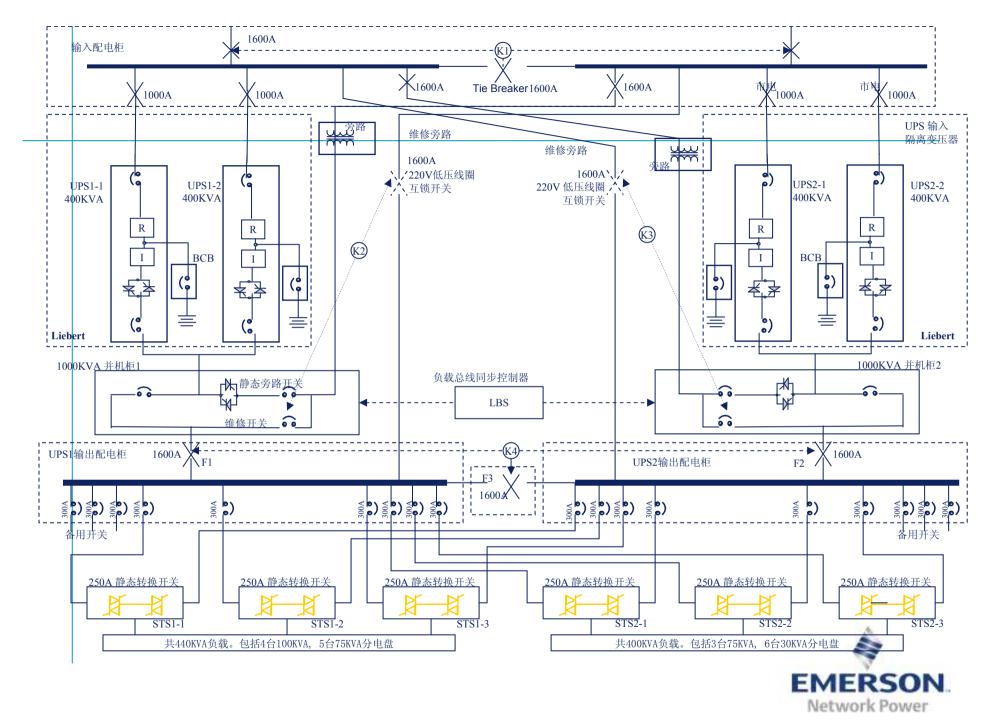
广州较场西 300KVA*3

深圳枢纽楼 300KVA*3

中国银行总部一中银大厦

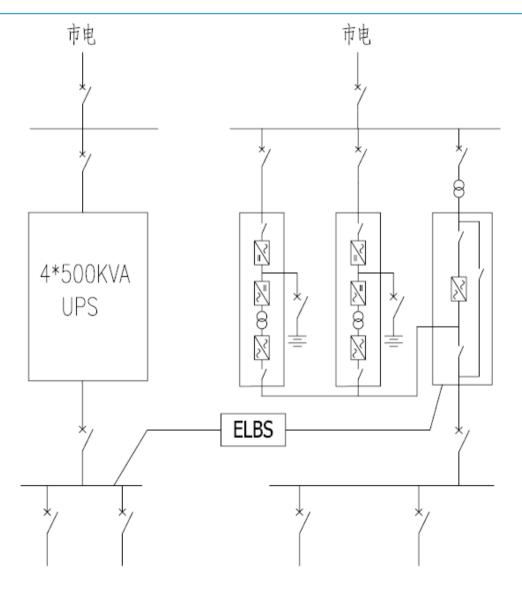
- 1. 用4台400KVAUPS双母线配电。采用负 中国银行总部一中银大厦 载母线同步追踪器(LBS)同步2路UPS 输出。
- 2. 采用独特的一匙二锁的Castell装置,当负载处于逆变器供电时,防止用户错误地把外置维修旁路开关同时合上,避免造成逆变器损坏。
- 3. 采用130台力博特豪华系统精密空调
- 4. 输出端配置18台精密配电中心(PPC) 及静态转换开关(STS)。
- 5. 03年改造为配置LBS的双路供电系统。

中国银行总行主办公楼


- 中国银行总行计算机中心所在地,是一座现代化智能大厦,整座楼宇实行全自动化管理(BMS)
- 该顶目采用"交钥匙工程"方式
- 2001年3月投入使用,系统一直运行良好。 力博特的设备运转在中国银行的心脏,使电 气系统的可用性达到99.9999%

中国银行一北京 UPS双总线供电系统推荐方案图(全部800KVA负载双总线供电)

上海证券大楼动力一体化解决方案


上海证券交易所动力机房总面积接近2,000平方米,是国内超大型的金融数据中心动力机房,负责上交所内所有设备的供电.作为国内最为核心的金融机构之一,必然需要业界最高等级的用电保障。艾默生提供的基于双母线系统的一体化解决方案(可用性99.99999业界最高水平)则正好满足了上海证券的要求。

上海证券大楼动力一体化解决方案

系统一和系统二:两台300KVA UPS通过并机旁路柜方式并机,通过负载母线同步控制器ELBS 与原4台500KVA并联UPS系统输出组成2条同步母线供电系统向负载供电。

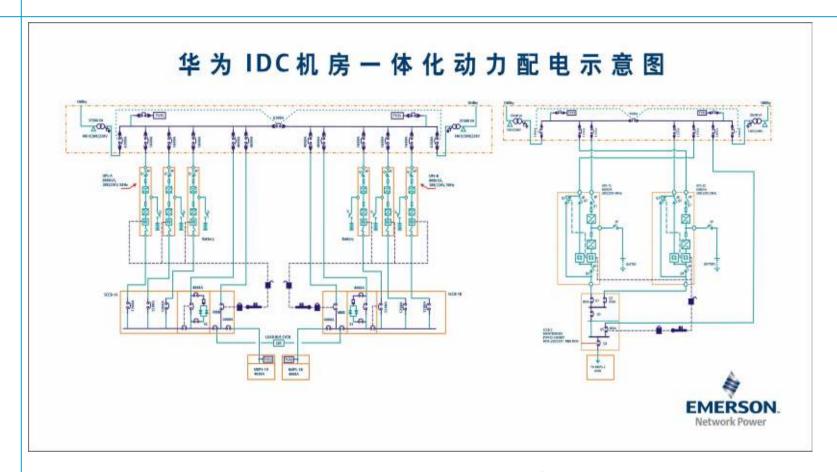
系统三:两台200KVA UPS通过并机旁路柜方式并机,通过负载母线同步控制器ELBS与原4台500KVA并联UPS系统输出组成2条同步母线供电系统向负载供电。

华为IDC Tier 4动力支撑系统

总机房面积:超过1万平方米

UPS系统: 8台800KVA组成双母线,2台600KVA组成直接并机系统

柴油发电机系统: 5台1250KVa 10KV中压发电机组


市电系统: 2路2500KVA 10KV市电电力供应

Network Power

华为IDC Tier 4动力支撑系统

华为的动力支撑系统由美国RTKL和首都建筑设计院联合设计, 按Tier 4的等级进行设计和建设。华为IDC 8年多的零中断运行 实践证明, Tier 4动力支撑系统是数据中心的无忧保障 EMERSON

Network Power

谢 谢!

